زیبایی در نتایج

Starting at e0 = 1, travelling at the velocity i relative to one's position for the length of time π, and adding 1, one arrives at 0. (The diagram is an Argand diagram)

برخی ریاضی‌دانان (Rota سال ۱۹۷۷، ص ۱۷۳) بر این باورند که نتیجه‌هایی در ریاضی را می‌توان زیبا خواند که دو حوزهٔ متفاوت و به ظاهر کاملا بی ارتباط در ریاضی را به هم مربوط می‌کنند. این نتیجه‌ها اغلب با عنوان عمیق (به انگلیسی: deep) توصیف می‌شوند.

اغلب بسیار مشکل می‌توان همه جهان ریاضی را دربارهٔ عمیق بودن یک نتیجه هم نظر یافت. در ادامه چند نمونه از این نتیجه‌ها آورده شده‌است. نخستین مورد تساوی اویلر است:

\displaystyle e^{i \pi} + 1 = 0\,.

فیزیکدان بزرگ ریچارد فاینمن این نتیجه را برجسته‌ترین رابطهٔ ریاضی (the most remarkable formula in mathematics) نامید.

نمونه‌های معاصر از این گونه نتیجه‌ها، عبارتند از modularity theorem که میان خم‌های بیضی-گون و فزم‌های modular رابطهٔ مهمی برقرار می‌کند (تلاش در این زمینه باعث شد تا اندرو وایلز و رابرت لانگلندز به جایزهٔ ولف دستیاب اند.) و monstrous moonshine که میان Monster group و modular functions بوسیلهٔ نظریهٔ ریسمان رابطه برقرار کرد. ریچارد بورچردز برای این کار جایزهٔ فیلدز را دریافت کرد.

درمقابل عمیق (deep) می‌توان از صفت بدیهی (trivial) استفاده کرد. یک قضیهٔ بدیهی را می‌توان به آسانی و در نگاه نخست از نتایج قضیه‌های قبلی بدست آورد. یا قضیه‌ای است که تنها در بعضی حالات خاص درست است. گاهی ممکن است یک عبارت از یک قضیه به اندازهٔ کافی بکر باشد که بتوانیم آن را عمیق در نظر بگیریم اما اثباتی که برای آن پیدا می‌شود کاملا آشکار است.

گادفری هارولد هاردی در کتاب عذرخواهی یک ریاضی‌دان (A Mathematician's Apology) پیشنهاد می‌دهد که یک نتیجخ یا اثبات زیبا، دارای سه ویژگی «گریزناپذیری» (inevitability)، «غیرمنتظره بودن» (unexpectedness) و «کوتاه بودن» (economy) است.[۴]

اما روتا، با شرط غیرمنتظره بودن به عنوان یکی از نشانه‌های زیبایی موافق نیست و برای آن یک نمونه می‌آورد:[۵]

« بسیاری از قضیه‌های ریاضی هنگامی که برای اولین بار معرفی شدند به نظر غیرمنتظره و شگفت‌انگیز می‌آمدند: بنابراین برای نمونه بیست - سی سال پیش (از سال ۱۹۷۷) اثبات وجود ساختار نامساوی‌های دیفرانسیلی در کره‌های با ابعاد بالا به نظر شگفت‌انگیز می‌آمد اما هرگز هیچ کس، آن را یک حقیقت زیبا نخواند.  »

موناستریسکی (Monastyrsky) می‌نویسد:[۶]

« بسیار سخت است تا ابتکاری مانند آنچه میلنور انجام داد پیدا کنیم. بنای زیبا از ساختارهای دیفرانسیلی متفاوت بر روی یک کرهٔ هفت بعدی. برهان ابتدایی میلنور خیلی ویژه به نظر نمی‌آمد ولی بعدها بریسکورن (E. Briscorn) نشان داد که این ساختارهای دیفرانسیلی را می‌توان به شیوه‌ای بسیار زیبا توصیف کرد.  »

این اختلاف‌ها نظرها نشان می‌دهد که زیبایی در طبیعت ریاضی یک مفهوم انتزاعی است و اینکه این زیبایی با نتایج ریاضیاتی در ارتباط است: که در این مورد نه تنها کره‌های عجیب و غیرمعمول دیده می‌شود بلکه نتیجه‌گیری‌های ویژه‌ای هم از آن‌ها بدست می‌آید.

   + مهدی - ۱٠:٤٠ ‎ق.ظ ; ۱۳٩٠/٧/٩